Peer-Reviewed Journal Details
Mandatory Fields
Maguire D, MacNamara B, Cuffe JE, Winter D, Doolan CM, Urbach V, O'Sullivan GC, Harvey BJ
1999
January
Steroids
Rapid responses to aldosterone in human distal colon.
Validated
()
Optional Fields
64
1-2
51
63
Aldosterone at normal physiological levels induces rapid increases in intracellular calcium and pH in human distal colon. The end target of these rapid signaling responses are basolateral K+ channels. Using spectrofluorescence microscopy and Ussing chamber techniques, we have shown that aldosterone activates basolateral Na/H exchange via a protein kinase C and calcium-dependent signaling pathway. The resultant intracellular alkalinization up-regulates an adenosine triphosphate (ATP)-dependent K+ channel (K(ATP)) and inhibits a Ca2+ -dependent K+ channel (K(Ca)). In Ussing chamber experiments, we have shown that the K(ATP) channel is required to drive sodium absorption, whereas the K(Ca) channel is necessary for both cyclic adenosine monophosphate and calcium-dependent chloride secretion. The rapid effects of aldosterone on intracellular calcium, pH, protein kinase C and K(ATP), K(Ca) channels are insensitive to cycloheximide, actinomycin D, and spironalactone, indicating a nongenomic mechanism of action. We propose that the physiological role for the rapid nongenomic effect of aldosterone is to prime pluripotential epithelia for absorption by simultaneously up-regulating K(ATP) channels to drive absorption through surface cells and down-regulating the secretory capacity by inhibiting K(Ca) channels involved in secretion through crypt cells.
Grant Details