Interactive tasks such as online configuration and e-commerce can be modelled as constraint satisfaction problems (CSPs). These can be solved interactively by a user assigning values to variables. The user may require advice and explanations from a system to help him/her find a satisfactory solution. Explanations of failure in constraint programming tend to focus on conflict. However, what is really desirable is an explanation that is corrective in the sense that it provides the basis for moving forward in the problem-solving process, More specifically, when faced with a dead-end, or when a desirable value has been removed from a domain, we need to compute alternative assignments for a subset of the assigned variables that enables the user to move forward. This paper defines this notion of corrective explanation, and proposes an algorithm to generate such explanations. The approach is shown to perform well on both real-world configuration benchmarks and randomly generated problems. © Springer-Verlag Berlin Heidelberg 2005.