Peer-Reviewed Journal Details
Mandatory Fields
Nizami, AS,Orozco, A,Groom, E,Dieterich, B,Murphy, JD
2012
January
Applied Energy
How much gas can we get from grass?
Validated
()
Optional Fields
Biofuel Biomethane Grass silage UASB 2-STAGE ANAEROBIC-DIGESTION ENERGY CROPS METHANE PRODUCTION ORGANIC WASTES BIOMETHANE SILAGE TEMPERATURE HYDROLYSIS REACTOR BALANCE
92
783
790
Grass biomethane has been shown to be a sustainable gaseous transport biofuel, with a good energy balance, and significant potential for economic viability. Of issue for the designer is the variation in characteristics of the grass depending on location of source, time of cut and species. Further confusion arises from the biomethane potential tests (BMP) which have a tendency to give varying results. This paper has dual ambitions. One of these is to highlight the various results for biomethane potential that may be obtained from the same grass silage. The results indicated that methane potential from the same grass silage varied from 350 to 493 L CH4 kg(-1) VS added for three different BMP procedures. The second ambition is to attempt to compare two distinct digestion systems again using the same grass: a two stage continuously stirred tank reactor (CSTR); and a sequentially fed leach bed reactor connected to an upflow anaerobic sludge blanket (SLBR-UASB). The two engineered systems were designed, fabricated, commissioned and operated at small pilot scale until stable optimal operating conditions were reached. The CSTR system achieved 451 L CH4 kg(-1) VS added over a 50 day retention period. The SLBR-UASB achieved 341 L CH4 kg(-1) VS added at a 30 day retention time. (C) 2011 Elsevier Ltd. All rights reserved.
DOI 10.1016/j.apenergy.2011.08.033
Grant Details