Peer-Reviewed Journal Details
Mandatory Fields
Merano, M. and Sonderegger, S. and Crottini, A. and Collin, S. and Pelucchi, E. and Renucci, P. and Malko, A. and Baier, M. H. and Kapon, E. and Ganiere, J. D. and Deveaud, B.
Time-resolved cathodoluminescence of InGaAs/AlGaAs tetrahedral pyramidal quantum structures
Optional Fields
An original time resolved cathodoluminescence set up has been used to investigate the optical properties and the carrier transport in quantum structures located in InGaAs/AlGaAs tetrahedral pyramids. An InGaAs quantum dot formed just below the top of the pyramid is connected to four types of low-dimensional barriers: InGaAs quantum wires on the edges of the pyramid, InGaAs quantum wells on the (111)A facets and segregated AlGaAs vertical quantum wire and AlGaAs vertical quantum wells formed at the centre and at the pyramid edges. Experiments were performed at a temperature of 92 K, an accelerating voltage of 10 kV and a beam probe current of 10 pA. The cathodoluminescence spectrum shows five luminescence peaks. Rise and decay times for the different emission wavelengths provide a clear confirmation of the peak attribution (previously done with other techniques) to the different nanostructures grown in a pyramid. Moreover, experimental results suggest a scenario where carriers diffuse from the lateral quantum structures towards the central structures (the InGaAs quantum dot and the segregated AlGaAs vertical quantum wire) via the InGaAs quantum wires on the edges of the pyramid. According to this hypothesis, we have modeled the carrier diffusion along these quantum wires. An ambipolar carrier mobility of 1400 cm(2)/Vs allows to obtain a good fit to all temporal dependences.
Grant Details