Photonic crystals made from noble metals such as silver are an interesting class of material for many applications such as chemical sensing, solar cells or photonics. Their fabrication suffers from a lack of reproducibility, and complicated and aggressive processes. In this paper we show a simple and reproducible method based on the black and white photography process, to get a self standing 3D silver photonic crystal. Their characterization by SEM and TEM allowed us to interpret the process, and optical analysis made in reflection and transmission were used to find out eventual coupling between surface plasmon polaritons and the photonics properties of the structure itself.Photonic crystals made from noble metals such as silver are an interesting class of material for many applications such as chemical sensing, solar cells or photonics. Their fabrication suffers from a lack of reproducibility, and complicated and aggressive processes. In this paper we show a simple and reproducible method based on the black and white photography process, to get a self standing 3D silver photonic crystal. Their characterization by SEM and TEM allowed us to interpret the process, and optical analysis made in reflection and transmission were used to find out eventual coupling between surface plasmon polaritons and the photonics properties of the structure itself.