A unique two-source controlled nanoelectromechanical switch has been assembled from individual, single clamped Ge nanowires. The switching behaviour was achieved by superimposing the control signals of specific frequencies to the electrostatic potential of the output terminals, eliminating the need for an additional gate electrode. Using an in situ manipulation technique inside a scanning electron microscope, we demonstrate that the pull-out force required to overcome adhesion at the contact can be significantly reduced by exciting mechanical resonant modes within the nanowire.