Peer-Reviewed Journal Details
Mandatory Fields
Zhdanov, AV,Waters, AHC,Golubeva, AV,Dmitriev, RI,Papkovsky, DB
2014
January
Biochimica Et Biophysica Acta-Bioenergetics
Availability of the key metabolic substrates dictates the respiratory response of cancer cells to the mitochondrial uncoupling
Validated
Optional Fields
Cancer cell Mitochondrial respiration Glycolysis Glutaminolysis Metabolic substrate Uncoupling P-(TRIFLUOROMETHOXY) PHENYLHYDRAZONE FCCP OPTICAL OXYGEN RESPIROMETRY INTRACELLULAR OXYGEN PC12 CELLS OXIDATIVE-PHOSPHORYLATION PHOSPHORESCENT PROBES ENERGY TRANSDUCTION LIVER MITOCHONDRIA PYRUVATE CARRIER GENE-EXPRESSION
1837
51
62
Active glycolysis and glutaminolysis provide bioenergetic stability of cancer cells in physiological conditions. Under hypoxia, metabolic and mitochondrial disorders, or pharmacological treatment, a deficit of key metabolic substrates may become life-threatening to cancer cells. We analysed the effects of mitochondrial uncoupling by FCCP on the respiration of cells fed by different combinations of Glc, Gal, Gln and Pyr. In cancer PC12 and HCT116 cells, a large increase in O-2 consumption rate (OCR) upon uncoupling was only seen when Gln was combined with either Glc or Pyr. Inhibition of glutaminolysis with BPTES abolished this effect. Despite the key role of Gln, addition of FCCP inhibited respiration and induced apoptosis in cells supplied with Gln alone or Gal/Gln. For all substrate combinations, amplitude of respiratory responses to FCCP did not correlate with Akt, Erk and AMPK phosphorylation, cellular ATP, and resting OCR, mitochondrial Ca2+ or membrane potential. However, we propose that proton motive force could modulate respiratory response to FCCP by regulating mitochondrial transport of Gln and Pyr, which decreases upon mitochondrial depolarisation. As a result, an increase in respiration upon uncoupling is abolished in cells, deprived of Gln or Pyr (GIc). Unlike PC12 or HCT116 cells, mouse embryonic fibroblasts were capable of generating pronounced response to FCCP when deprived of Gln, thus exhibiting lower dependence on glutaminolysis. Overall, the differential regulation of the respiratory response to FCCP by metabolic environment suggests that mitochondrial uncoupling has a potential for substrate-specific inhibition of cell function, and can be explored for selective cancer treatment. (C) 2013 Elsevier B.V. All rights reserved.
10.1016/j.bbabio.2013.07.008
Grant Details