Peer-Reviewed Journal Details
Mandatory Fields
Nolan, Michael
2013
November
Journal of Chemical Physics
Modifying ceria (111) with a TiO2 nanocluster for enhanced reactivity
Published
Optional Fields
Adsorption Vacancies Nanoparticles Surface oxidation Density functional theory Augmented-wave method Gas shift reaction Mixed-metal oxide Oxidative dehydrogenation Catalytic activity Co oxidation Platinum nanoparticles CeO2(111) surface Storage capacity
139
184710
Modification of ceria catalysts is of great interest for oxidation reactions such as oxidative dehydrogenation of alcohols. Improving the reactivity of ceria based catalysts for these reactions means that they can be run at lower temperatures and density functional theory (DFT) simulations of new structures and compositions are proving valuable in the development of these catalysts. In this paper, we have used DFT+U (DFT corrected for on-site Coulomb interactions) to examine the reactivity of a novel modification of ceria, namely, modifying with TiO2, using the example of a Ti2O4 species adsorbed on the ceria (111) surface. The oxygen vacancy formation energy in the Ti2O4-CeO2 system is significantly reduced over the bare ceria surfaces, which together with previous work on ceria-titania indicates that the presence of the interface favours oxygen vacancy formation. The energy gain upon hydrogenation of the catalyst, which is the rate determining step in oxidative dehydrogenation, further points to the improved oxidation power of this catalyst structure. (C) 2013 AIP Publishing LLC.
0021-9606
http://aip.scitation.org/doi/abs/10.1063/1.4829758
10.1063/1.4829758
Grant Details