Peer-Reviewed Journal Details
Mandatory Fields
Riza, Nabeel A.; Ghauri, Farzan; Perez, Frank
2007
January
Optical Engineering
Wireless pressure sensor using laser targeting of silicon carbide
Published
()
Optional Fields
Optical sensors Pressure sensor Extreme environments
46
11
014401
To the best of our knowledge, proposed is the first extreme-environment wireless pressure sensor design using a remoted single-crystal SiC chip within a pressurized capsule. A detailed theoretical analysis of the sensor system is performed, including the SiC chip's mechanical response within the pressure capsule and the pressure measurement technique's optical response based on image demagnification. The remote sensor was experimentally tested at room temperature for pressures up to 41 atm, and the sensor response is consistent with the theoretical analysis. The demonstrated sensor has a current experimental resolution of 1.17 atm with a designed maximum pressure range of 140 atm. Improved sensing resolution and range can be achieved via optimal selection of the SiC chip's dimensions and its seating in the pressure capsule. Applications for this sensor include extreme environments involving hot gases and corrosive fluids, as in power generation systems, oil field operations, and aerospace systems. (c) 2007 Society of Photo-Optical Instrumentation Engineers.To the best of our knowledge, proposed is the first extreme-environment wireless pressure sensor design using a remoted single-crystal SiC chip within a pressurized capsule. A detailed theoretical analysis of the sensor system is performed, including the SiC chip's mechanical response within the pressure capsule and the pressure measurement technique's optical response based on image demagnification. The remote sensor was experimentally tested at room temperature for pressures up to 41 atm, and the sensor response is consistent with the theoretical analysis. The demonstrated sensor has a current experimental resolution of 1.17 atm with a designed maximum pressure range of 140 atm. Improved sensing resolution and range can be achieved via optimal selection of the SiC chip's dimensions and its seating in the pressure capsule. Applications for this sensor include extreme environments involving hot gases and corrosive fluids, as in power generation systems, oil field operations, and aerospace systems. (c) 2007 Society of Photo-Optical Instrumentation Engineers.
0091-3286
10.1117/1.2432885
Grant Details