Gold and silver complexes containing the monophosphane 1-PPh2-2-Me-l,2-C2B10H10 with different coordination numbers (2, 3) have been synthesized: [M(7,8-(PPh2)2-C2B9H10)(1-PPh2-2-Me-C2B10H10)] (M = Ag, Au) and [Au2(μ-1,n-C2B10H10)(1-PPh2-2-Me-
C2B10H10)2] (n = 2, 12). Solid-state pyrolysis of [AuCl(1-PPh2-2-Me-C2B10H10)] and [Au2(μ-1,12-C2B10H10)(1-PPh2-2-Me-C2B10H10)2] in air
and of solutions of [AuCl(1-PPh2-2-Me-C2B10H10)] deposited on silicon and silica at 800 °C results in single-crystal Au, confirmed by diffraction and SEM-EDS. The morphology of the pyrolytic products depends on the thermolytic conditions, and different novel 3-D superstructures or
microcrystals are possible. We also propose a mechanism for the thermal
conversion of these precursors to structural crystalline and phase pure materials. The presence of the carborane monophosphane seems to originate quenching of the luminescence at room temperature in the complexes [Au2(μ-1,n-C2B10H10)(1-PPh2-2-Me-C2B10H10)2], in comparison with other [Au2(μ-1,n-C2B10H10)L2] species (L = monophosphane).