The lexicographically-ordered CSP ("lexicographic CSP" or "LO-CSP" for short) combines a simple representation of preferences with the feasibility constraints of ordinary CSPs. Preferences are defined by a total ordering across all assignments, such that a change in assignment to a given variable is more important than any change in assignment to any less important variable. In this paper, we show how this representation can be extended to handle conditional preferences in two ways. In the first, for each conditional preference relation, the parents have higher priority than the children in the original lexicographic ordering. In the second, the relation between parents and children need not correspond to the importance ordering of variables. In this case, by obviating the "overwhelming advantage" effect with respect to the original variables and values, the representational capacity is significantly enhanced. For problems of the first type, any of the algorithms originally devised for ordinary LO-CSPs can also be used when some of the domain orderings are dependent on assignments to "parent" variables. For problems of the second type, algorithms based on lexical orders can be used if the representation is augmented by variables and constraints that link preference orders to assignments. In addition, the branch-and-bound algorithm originally devised for ordinary LO-CSPs can be extended to handle CSPs with conditional domain orderings.