Peer-Reviewed Journal Details
Mandatory Fields
Heimer-McGinn, V;Murphy, ACH;Kim, JC;Dymecki, SM;Young, PW
2013
October
Neuroscience Letters
Decreased dendritic spine density as a consequence of tetanus toxin light chain expression in single neurons in vivo
Validated
Optional Fields
CULTURED HIPPOCAMPAL-NEURONS LONG-TERM POTENTIATION TRANSGENIC MICE COMPETITION EXOCYTOSIS MEMBRANE CELL
555
36
41
Tetanus toxin light chain has been used for some time as a genetically-encoded tool to inhibit neurotransmission and thereby dissect mechanisms underlying neural circuit formation and function. In addition to cleaving v-SNARE proteins involved in axonal neurotransmitter release, tetanus toxin light chain can also block activity-dependent dendritic exocytosis. The application of tetanus toxin light chain as a research tool in mammalian models, however, has been limited to a small number of cell types. Here we have induced expression of tetanus toxin light chain in a very small number of fluorescently labeled neurons in many regions of the adult mouse brain. This was achieved by crossing SLICK (single-neuron labeling with inducible cre-mediated knockout) transgenic lines with RC::Ptox mice that have Cre recombinase-controlled expression of the tetanus toxin light chain. Using this system we have examined the cell-autonomous effects of tetanus toxin light chain expression on dendritic spines in vivo. We find that dendritic spine density is reduced by 15% in tetanus toxin expressing hippocampal CA1 pyramidal cells, while spine morphology is unaltered. This effect is likely to be a consequence of inhibition of activity-dependent dendritic exocytosis and suggests that on-going plasticity-associated exocytosis is required for long-term dendritic spine maintenance in vivo. (C) 2013 Elsevier Ireland Ltd. All rights reserved.
CLARE
0304-3940
10.1016/j.neulet.2013.09.007
Grant Details