Peer-Reviewed Journal Details
Mandatory Fields
C. O'Dwyer
2016
July
Advanced Materials
Colour-Coded Batteries – Inverse Opal Materials Circuitry for Enhanced Electrochemical Energy Storage and Optically Encoded Diagnostics.
Published
Optional Fields
28
5681
5688
For consumer electronic devices, long-life, stable, and reasonably fast charging Li-ion batteries with good stable capacities are a necessity. For exciting and important advances in the materials that drive innovations in electrochemical energy storage (EES), modular thin-fi lm solar cells, and wearable, fl exible technology of the future, real-time analysis and indication of battery performance and health is crucial. Here, developments in color-coded assessment of battery material performance and diagnostics are described, and a vision for using electro-photonic inverse opal materials and all-optical probes to assess, characterize, and monitor the processes non-destructively in real time are outlined. By structuring any cathode or anode material in the form of a photonic crystal or as a 3D macroporous inverse opal, color- coded “chameleon” battery-strip electrodes may provide an amenable way to distinguish the type of process, the voltage, material and chemical phase changes, remaining capacity, cycle health, and state of charge or discharge of either existing or new materials in Li-ion or emerging alternative battery types, simply by monitoring its color change.
http://onlinelibrary.wiley.com/doi/10.1002/adma.201503973/pdf
10.1002/adma.201503973
Grant Details