Peer-Reviewed Journal Details
Mandatory Fields
Mullins, ND;Deadman, BJ;Moynihan, HA;McCarthy, FO;Lawrence, SE;Thompson, J;Maguire, AR
2016
December
Journal Of Pharmaceutical Analysis
The impact of storage conditions upon gentamicin coated antimicrobial implants
Validated
WOS: 6 ()
Optional Fields
PERFORMANCE LIQUID-CHROMATOGRAPHY CEMENTLESS HIP PROSTHESES AMINOGLYCOSIDE ANTIBIOTICS ANTIBACTERIAL EFFICACY INFECTION PROPHYLAXIS MASS-SPECTROMETRY TITANIUM IMPLANTS COATINGS SULFATE IDENTIFICATION
6
374
381
A systematic approach was developed to investigate the stability of gentamicin sulfate (GS) and GS/poly (lacticco-glycolic acid) (PLGA) coatings on hydroxyapatite surfaces. The influence of environmental factors (light, humidity, oxidation and heat) upon degradation of the drug in the coatings was investigated using liquid chromatography with evaporative light scattering detection and mass spectrometry. GS coated rods were found to be stable across the range of environments assessed, with only an oxidizing atmosphere resulting in significant changes to the gentamicin composition. In contrast, rods coated with GS/PLGA were more sensitive to storage conditions with compositional changes being detected after storage at 60 degrees C, 75% relative humidity or exposure to light. The effect of.-irradiation on the coated rods was also investigated and found to have no significant effect. Finally, liquid chromatography-mass spectrometry analysis revealed that known gentamines C-1, C-1a and C-2 were the major degradants formed. Forced degradation of gentamicin coatings did not produce any unexpected degradants or impurities.
AMSTERDAM
2095-1779
10.1016/j.jpha.2016.05.002
Grant Details