Peer-Reviewed Journal Details
Mandatory Fields
Fronzi, Marco; Tateyama, Yoshitaka; Marzari, Nicola; Nolan, Michael; Traversa, Enrico
Materials For Renewable And Sustainable Energy
First-principles molecular dynamics simulations of proton diffusion in cubic BaZrO3 perovskite under strain conditions
Optional Fields
First principles calculations Proton conduction Strain effect Fuel cells
First-principles molecular dynamics simulations have been employed to analyse the proton diffusion in cubic BaZrO 33 perovskite at 1300 K. A non-linear effect on the proton diffusion coefficient arising from an applied isometric strain up to 2 %% of the lattice parameter, and an evident enhancement of proton diffusion under compressive conditions have been observed. The structural and electronic properties of BaZrO 33 are analysed from Density Functional Theory calculations, and after an analysis of the electronic structure, we provide a possible explanation for an enhanced ionic conductivity of this bulk structure that can be caused by the formation of a preferential path for proton diffusion under compressive strain conditions. By means of Nudged Elastic Band calculations, diffusion barriers were also computed with results supporting our conclusions.
Grant Details