Peer-Reviewed Journal Details
Mandatory Fields
van Dreunen, M.; Collins, G.; Glynn, C.; O'Dwyer, C.; Holmes, J. D.
Acs Applied Materials & Interfaces
Functionalization of SiO2 Surfaces for Si Monolayer Doping with Minimal Carbon Contamination
Optional Fields
Carbon contamination Covalent functionalization Doping Monolayer Phosphonic acids Silicon Stability X-ray photoelectron spectroscopy
Monolayer doping (MLD) involves the functionalization of semiconductor surfaces followed by an annealing step to diffuse the dopant into the substrate. We report an alternative doping method, oxide-MLD, where ultrathin SiO2 overlayers are functionalized with phosphonic acids for doping Si. Similar peak carrier concentrations were achieved when compared with hydrosilylated surfaces (~2 1020 atoms/cm3). Oxide-MLD offers several advantages over conventional MLD, such as ease of sample processing, superior ambient stability, and minimal carbon contamination. The incorporation of an oxide layer minimizes carbon contamination by facilitating attachment of carbon-free precursors or by impeding carbon diffusion. The oxide-MLD strategy allows selection of many inexpensive precursors and therefore allows application to both p- and n-doping. The phosphonic acid-functionalized SiO2 surfaces were investigated using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy, whereas doping was assessed using electrochemical capacitance voltage and Hall measurements.
Washington, DC, USA
Grant Details