Peer-Reviewed Journal Details
Mandatory Fields
Klinkert, K;Whelan, D;Clover, AJP;Leblond, AL;Kumar, AHS;Caplice, NM
2017
January
European Surgical Research
Selective M2 Macrophage Depletion Leads to Prolonged Inflammation in Surgical Wounds
Validated
WOS: 37 ()
Optional Fields
COLLAGEN-SYNTHESIS DIABETIC MICE IN-VIVO MONOCYTES INJURY DISTINCT SUBSETS REPAIR IDENTIFICATION POLARIZATION
58
109
120
Background: A prolonged inflammatory phase is seen in aberrant wound healing and in chronic wounds. Macrophages are central to wound healing. Distinct macrophage subtypes have differing roles both in initial inflammation and in later tissue repair. Broadly, these cells can be divided into M1 and M2 macrophages. M2 macrophage proliferation and differentiation is regulated by colony-stimulating factor 1 (CSF-1) signalling and can be blocked by GW2580, a competitive cFMS kinase inhibitor, thereby allowing for analysis of the effect of M2 blockade on progression of surgical wounds. Materials and Methods: Macrophage Fas-induced apoptosis (MaFIA) transgenic mice with a macrophage-specific promoter used to express green fluorescent protein (GFP) were used to allow for cell tracking. The animals were treated by oral gavage with GW2580. Surgical wounds were created and harvested after 2 weeks for analysis. Results: GW2580-treated mice had significantly more GFP+ cells in the surgical scar than vehicle-treated animals (GW2580, 68.0 +/- 3.1%; vehicle, 42.8 +/- 1.7%; p < 0.001), and GW2580 treatment depleted CD206+ M2 macrophages in the scar (GW2580, 1.4%; vehicle, 19.3%; p < 0.001). Treated animals showed significantly higher numbers of neutrophils (vehicle, 18.0%; GW2580, 51.3%; p < 0.01) and M1 macrophages (vehicle, 3.8%; GW2580, 12.8%; p < 0.01) in the scar compared to vehicle-treated animals. The total collagen content in the area of the scar was decreased in animals treated with GW2580 as compared to those treated with vehicle alone (GW2580, 67.1%; vehicle, 79.9%; p < 0.005). Conclusions: Depletion of M2 macrophages in surgical wounds via CSF-1 signalling blockade leads to persistent inflammation, with an increase in neutrophils and M1 macrophages and attenuated collagen deposition. (C) 2017 S. Karger AG, Basel
BASEL
0014-312X
10.1159/000451078
Grant Details