Other Publication Details
Mandatory Fields
Reviews
O'Connell, J;Biswas, S;Duffy, R;Holmes, JD
2016
August
Chemical approaches for doping nanodevice architectures
Validated
1
WOS: 22 ()
Optional Fields
PHOSPHINE OXIDE MONOLAYERS FREE-ELECTRON DENSITY P-N-JUNCTIONS SEMICONDUCTOR SURFACES GERMANIUM NANOWIRES RAMAN-SPECTROSCOPY SILICON SURFACES LIQUID METHANOL GE NANOWIRES FUNCTIONALIZATION
Advanced doping technologies are key for the continued scaling of semiconductor devices and the maintenance of device performance beyond the 14 nm technology node. Due to limitations of conventional ion-beam implantation with thin body and 3D device geometries, techniques which allow precise control over dopant diffusion and concentration, in addition to excellent conformality on 3D device surfaces, are required. Spin-on doping has shown promise as a conventional technique for doping new materials, particularly through application with other dopant methods, but may not be suitable for conformal doping of nanostructures. Additionally, residues remain after most spin-on-doping processes which are often difficult to remove. In situ doping of nanostructures is especially common for bottom-up grown nanostructures but problems associated with concentration gradients and morphology changes are commonly experienced. Monolayer doping has been shown to satisfy the requirements for extended defect-free, conformal and controllable doping on many materials ranging from traditional silicon and germanium devices to emerging replacement materials such as III-V compounds but challenges still remain, especially with regard to metrology and surface chemistry at such small feature sizes. This article summarises and critically assesses developments over the last number of years regarding the application of gas and solution phase techniques to dope silicon-, germanium- and III-V-based materials and nanostructures to obtain shallow diffusion depths coupled with high carrier concentrations and abrupt junctions.
BRISTOL
IOP PUBLISHING LTD
0957-4484
10.1088/0957-4484/27/34/342002
Grant Details