Over the last decade, Cloud environments have gained significant attention by the scientific community, due to their flexibility in the allocation of resources and the various applications hosted in such environments. Recently, high performance computing applications are migrating to Cloud environments. Efficient methods are sought for solving very large sparse linear systems occurring in various scientific fields such as Computational Fluid Dynamics, N-Body simulations and Computational Finance. Herewith, the parallel multi-projection type methods are reviewed and discussions concerning the implementation issues for IaaS-type Cloud environments are given. Moreover, phenomena occurring due to the "noisy neighbor" problem, varying interconnection speeds as well as load imbalance are studied. Furthermore, the level of exposure of specialized hardware residing in modern CPUs through the different layers of software is also examined. Finally, numerical results concerning the applicability and effectiveness of multi-projection type methods in Cloud environments based on OpenStack are presented.