Peer-Reviewed Journal Details
Mandatory Fields
Hulubei, T,Freuder, EC,Wallace, RJ;
2003
January
Ai Edam (Artificial Intelligence For Engineering Design, Analysis and Manufacturing)
The Goldilocks problem
Validated
()
Optional Fields
configuration constraint satisfaction heuristics CONFIGURATION
17
3
11
Constraint-based reasoning is often used to represent and find solutions to configuration problems. In the field of constraint satisfaction, the major focus has been on finding solutions to difficult problems. However, many real-life configuration problems, although not extremely complicated, have a huge number of solutions, few of which are acceptable from a practical standpoint. In this paper we present a value ordering heuristic for constraint solving that attempts to guide search toward solutions that are acceptable. More specifically, by considering weights that are assigned to values and sets of values, the heuristic can guide search toward solutions for which the total weight is within an acceptable interval. Experiments with random constraint satisfaction problems demonstrate that, when a problem has numerous solutions, the heuristic makes search extremely efficient even when there are relatively few solutions that fall within the interval of acceptable weights. In these cases, an algorithm that is very effective for finding a feasible solution to a given constraint satisfaction problem (the "maintained arc consistency" algorithm or MAC) does not find a solution in the same weight interval within a reasonable time when it is run without the heuristic.
DOI 10.1017/S0890060403171028
Grant Details