Peer-Reviewed Journal Details
Mandatory Fields
Doonan, F,Donovan, M,Cotter, TG;
2003
March
The Journal of Neuroscience
Caspase-independent photoreceptor apoptosis in mouse models of retinal degeneration
Validated
()
Optional Fields
photoreceptor apoptosis caspase independent cytochrome c rd MNU METHYL-N-NITROSOUREA DOMINANT RETINITIS-PIGMENTOSA ETOPOSIDE-INDUCED APOPTOSIS TRAUMATIC BRAIN INJURY CYTOCHROME-C RELEASE SPRAGUE-DAWLEY RATS ACTIVATING FACTOR-I CELL-DEATH DIFFERENTIAL EXPRESSION DNA FRAGMENTATION
23
5723
5731
Apoptosis is the mode of cell death in retinitis pigmentosa, a group of retinal degenerative disorders primarily affecting rod photoreceptors. Although caspases have been demonstrated to play a central role in many incidences of apoptosis, accumulating evidence suggests that they may not be required for all forms of apoptotic cell death. The present study examined the mechanism of cell death in two in vivo models of photoreceptor apoptosis: the retinal degeneration (rd) mouse, a naturally occurring mutant model, and N-methyl-N-nitrosourea-induced retinal degeneration. Specifically, we examined the activation status of caspase-9, -8, -7, -3, and -2 and determined the caspase requirements for cytochrome c release, DNA fragmentation, and apoptosis-associated proteolysis of specific caspase substrates. We show that apoptosis in both in vivo models is independent of caspase-9, -8, -7, -3, and -2 activation. DNA fragmentation occurs in the absence of caspase-mediated ICAD (inhibitor of caspase-activated DNase) proteolysis, suggesting that an alternative endonuclease is responsible for DNA cleavage in these models. Importantly, we show that apoptosome activation is prevented because of an absence of mitochondrial cytochrome c release. Experiments performed using a cell-free system indicate that cytochrome c-dependent proteolysis and activation of caspase-9 can be restored in a neonatal cell-free system. However, we found that cytochrome c-dependent proteolysis and activation of caspase-9 could not be restored in an adult cell-free system because of an age-related decrease in the expression of Apaf-1 in the normal developing mouse retina. In the rd mouse, however, this age-related downregulation of apoptotic proteins was not observed, highlighting a critical feature of this model and the prevention of cytochrome c release as an apical event in caspase-independent apoptosis in this system.
Grant Details