Peer-Reviewed Journal Details
Mandatory Fields
Georgiev, Y. M.; Petkov, N.; Yu, R.; Nightingale, A. M.; Buitrago, E.; Lotty, O.; deMello, J. C.; Ionescu, A.; Holmes, J. D.
2019
April
Nanotechnology
Detection of ultra-low protein concentrations with the simplest possible field effect transistor.
Validated
Optional Fields
30
32
324001(1)
324001(8)
Silicon nanowire (Si NW) sensors have attracted great attention due to their ability to provide fast, low-cost, label-free, real-time detection of chemical and biological species. Usually configured as field effect transistors (FETs), they have already demonstrated remarkable sensitivity with high selectivity (through appropriate functionalisation) towards a large number of analytes in both liquid and gas phases. Despite these excellent results, Si NW FET sensors have not yet been successfully employed to detect single molecules of either a chemical or biological target species. Here we show that sensors based on silicon junctionless nanowire transistors (JNTs), the simplest possible transistors, are capable of detecting the protein streptavidin at a concentration as low as 580 zM closely approaching the single molecule level. This ultrahigh detection sensitivity is due to the intrinsic advantages of junctionless devices over conventional FETs. Apart from their superior functionality, JNTs are much easier to fabricate by standard microelectronic processes than transistors containing p-n junctions. The ability of JNT sensors to detect ultra-low concentrations (in the zeptomolar range) of target species, and their potential for low-cost mass production, will permit their deployment in numerous environments, including life sciences, biotechnology, medicine, pharmacology, product safety, environmental monitoring and security.
Bristol, UK
1361-6528
https://iopscience.iop.org/article/10.1088/1361-6528/ab192c/meta
10.1088/1361-6528/ab192c
Grant Details