Peer-Reviewed Journal Details
Mandatory Fields
Choi J.;O’Loughlin S.;Atkins J.;Puglisi J.
Science Advances
The energy landscape of -1 ribosomal frameshifting
WOS: 18 ()
Optional Fields
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). Maintenance of translational reading frame ensures the fidelity of information transfer during protein synthesis. Yet, programmed ribosomal frameshifting sequences within the coding region promote a high rate of reading frame change at predetermined sites thus enriching genomic information density. Frameshifting is typically stimulated by the presence of 3' messenger RNA (mRNA) structures, but how these mRNA structures enhance -1 frameshifting remains debatable. Here, we apply single-molecule and ensemble approaches to formulate a mechanistic model of ribosomal -1 frameshifting. Our model suggests that the ribosome is intrinsically susceptible to frameshift before its translocation and this transient state is prolonged by the presence of a precisely positioned downstream mRNA structure. We challenged this model using temperature variation in vivo, which followed the prediction made based on in vitro results. Our results provide a quantitative framework for analyzing other frameshifting enhancers and a potential approach to control gene expression dynamically using programmed frameshifting.
Grant Details