Peer-Reviewed Journal Details
Mandatory Fields
Howick K.;Chruscicka B.;Felice D.;Ramirez V.;van Leuven L.;Pietra C.;Cryan J.;Griffin B.;Schellekens H.
2020
May
Neuropharmacology
Behavioural characterization of ghrelin ligands, anamorelin and HM01: Appetite and reward-motivated effects in rodents
Validated
WOS: 5 ()
Optional Fields
168
© 2020 Elsevier Ltd The ghrelinergic system has been steadily investigated as a therapeutic target in the treatment of metabolic disorders and modulation of appetite. While endogenous ghrelin activates the full complement of the growth hormone secretagogue receptor (GHSR-1a) pathways, synthetic GHSR-1a ligands display biased signalling and functional selectivity, which have a significant impact on the intended and indeed, unintended, therapeutic effects. The widespread expression of the GHSR-1a receptor in vivo also necessitates an imperative consideration of the biodistribution of GHSR-1a ligands. Here, we investigate anamorelin and HM01, two recently described synthetic GHSR-1a ligands which have shown promising effects on food intake in preclinical and clinical studies. We compare the downstream signalling pathways in cellular in vitro assays, including calcium mobilization, IP-one, internalization and ß-arrestin recruitment assays. We describe a novel divergent activation of central reward circuitry by anamorelin and HM01 using c-Fos immunostaining as well as behavioural effects in food intake and reward paradigms. Interestingly, we found a paradoxical reduction in reward-related behaviour for anamorelin and HM01 treated animals in our chosen paradigms. The work highlights the critical importance to consider signalling bias in relation to future ghrelin-based therapies. In addition, central access of GHSR-1a ligands, particularly to reward areas of the brain, remains a crucial factor in eliciting potent appetite-stimulating effects. The precise characterization of downstream ghrelinergic signalling and biodistribution of novel GHSR-1a ligands will be decisive in their successful development and will allow predictive modelling and design of future synthetic ligands to combat metabolic and appetite disorders involving the ghrelinergic system.
0028-3908
10.1016/j.neuropharm.2020.108011
Grant Details