Conference Publication Details
Mandatory Fields
Paul, Kankana;Mallick, Dhiman;Roy, Saibal
2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications, PowerMEMS 2019
Improved performances of wideband MEMS electromagnetic vibration energy harvesters using patterned micro-magnet arrays
Optional Fields
Electromagnetic coupling Electromagnetic devices Energy harvesting Magnetic flux Magnets Micromechanical devices Springs (mechanical) Telecommunication power management Vibrations Wireless sensor networks
Krakow, Poland
The ubiquitous ambient vibrational energy is a potential candidate for solving the pertinent issue of perpetual powering of the numerous deployed wireless sensor nodes. The major roadblock in the materialization of a fully integrated high-efficiency electromagnetic vibration energy harvester is the lack of CMOS compatible magnetic materials and its integration. This work demonstrates the unique advantage of employing high performance stripe patterned array of magnets instead of conventional thin film of magnets which enhances the electromagnetic coupling factor to 53.03 mWb/m by maximizing the magnetic flux gradient within a small footprint and in a precise location. Further, it explores the benefits of employing compact in-plane moving nonlinear MEMS spring architecture, which till date is relatively unreported, that enhances the bandwidth of operation 3 times as compared with its linear counterpart at the cost of reduced peak load power. This detailed study provides a design guideline and opens up the scope for further design optimization for improving overall performance of MEMS Electromagnetic Vibration Energy Harvesters (EM-VEH).
Grant Details