Peer-Reviewed Journal Details
Mandatory Fields
Bai, J. and Wang, Q. and Wang, T. and Cullis, A. G. and Parbrook, P. J.;
Journal of Applied Physics
Optical and microstructural study of a single layer of InGaN quantum dots
Optional Fields
Two typical kinds of InGaN quantum dots (QDs) have been grown on sapphires under different conditions through modifying the NH3 flow rate using metal-organic chemical vapor deposition: small spherical dots with a high dot density and large truncated pyramidal dots with a low dot density. The small dots have been found typically coherent and defect-free, while a strain relaxation has often been observed in the large dots. Consequently, this leads to a massive difference in optical properties between them. The optical properties have been investigated by means of temperature-dependent and excitation power-dependent microphotoluminescence measurements. It has been found that the small spherical QDs show higher optical quantum efficiency and much weaker piezoelectric field induced quantum-confined Stark effect than the large truncated QDs. Based on the energy balance between the strain and surface energy, the influence of V/III ratio on the transition from two-dimensional to three-dimensional growth mode during the QD growth has been discussed.
Grant Details