Peer-Reviewed Journal Details
Mandatory Fields
Hawkes, C. P.,Oni, O. A.,Dempsey, E. M.,Ryan, C. A.;
2009
November
Potential hazard of the Neopuff T-piece resuscitator in the absence of flow limitation
Validated
()
Optional Fields
94
66
OBJECTIVE: (1) To assess peak inspiratory pressure (PIP), positive end expiratory pressure (PEEP) and maximum pressure relief (P(max)) at different rates of gas flow, when the Neopuff had been set to function at 5 l/min. (2) To assess maximum PIP and PEEP at a flow rate of 10 l/min with a simulated air leak of 50%. DESIGN: 5 Neopuffs were set to a PIP of 20, PEEP of 5 and P(max) of 30 cm H(2)O at a gas flow of 5 l/min. PIP, PEEP and P(max) were recorded at flow rates of 10, 15 l/min and maximum flow. Maximum achievable pressures at 10 l/min gas flow, with a 50% air leak, were measured. RESULTS: At gas flow of 15 l/min, mean PEEP increased to 20 (95% CI 20 to 21), PIP to 28 (95% CI 28 to 29) and the P(max) to 40 cm H(2)O (95% CI 38 to 42). At maximum flow (85 l/min) a PEEP of 71 (95% CI 51 to 91) and PIP of 92 cm H(2)O (95% CI 69 to 115) were generated. At 10 l/min flow, with an air leak of 50%, the maximum PEEP and PIP were 21 (95% CI 19 to 23) and 69 cm H(2)O (95% CI 66 to 71). CONCLUSIONS: The maximum pressure relief valve is overridden by increasing the rate of gas flow and potentially harmful PIP and PEEP can be generated. Even in the presence of a 50% gas leak, more than adequate pressures can be provided at 10 l/min gas flow. We recommend the limitation of gas flow to a rate of 10 l/min as an added safety mechanism for this device.OBJECTIVE: (1) To assess peak inspiratory pressure (PIP), positive end expiratory pressure (PEEP) and maximum pressure relief (P(max)) at different rates of gas flow, when the Neopuff had been set to function at 5 l/min. (2) To assess maximum PIP and PEEP at a flow rate of 10 l/min with a simulated air leak of 50%. DESIGN: 5 Neopuffs were set to a PIP of 20, PEEP of 5 and P(max) of 30 cm H(2)O at a gas flow of 5 l/min. PIP, PEEP and P(max) were recorded at flow rates of 10, 15 l/min and maximum flow. Maximum achievable pressures at 10 l/min gas flow, with a 50% air leak, were measured. RESULTS: At gas flow of 15 l/min, mean PEEP increased to 20 (95% CI 20 to 21), PIP to 28 (95% CI 28 to 29) and the P(max) to 40 cm H(2)O (95% CI 38 to 42). At maximum flow (85 l/min) a PEEP of 71 (95% CI 51 to 91) and PIP of 92 cm H(2)O (95% CI 69 to 115) were generated. At 10 l/min flow, with an air leak of 50%, the maximum PEEP and PIP were 21 (95% CI 19 to 23) and 69 cm H(2)O (95% CI 66 to 71). CONCLUSIONS: The maximum pressure relief valve is overridden by increasing the rate of gas flow and potentially harmful PIP and PEEP can be generated. Even in the presence of a 50% gas leak, more than adequate pressures can be provided at 10 l/min gas flow. We recommend the limitation of gas flow to a rate of 10 l/min as an added safety mechanism for this device.
1468-2052 (Electronic) 13
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19357121http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=19357121
Grant Details